The Contextual AI Platform, powered by RAG 2.0
Easily build specialized RAG agents that your enterprise can trust
The end-to-end platform for building specialized RAG agents
![](https://contextual.ai/wp-content/uploads/2025/01/Container-v2.png)
- Deliver greater ROI than traditional AI copilots by addressing higher-value use cases
- Support subject matter experts in domain-specific knowledge work
- Retrieve and reason over massive volumes of unstructured and structured data
- Achieve superior accuracy than traditional RAG with jointly optimized RAG components
- Maintain retrieval performance at scale across complex, noisy enterprise data
- Specialize components, as part of a unified system, to precisely address your use case
Platform Capabilities
![](https://contextual.ai/wp-content/uploads/2025/01/accuracy-img.png)
Achieve production-grade accuracy for any use case
Meet the stringent accuracy requirements needed to move your specialized RAG agents from demo to production
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Mixture-of-retrievers approach and SOTA reranker to retrieve and reason over text, images, charts, & other complex data sources
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Iterative retrieval and reasoning chains to sharpen accuracy for complex tasks
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Stable retrieval performance in real-world deployments with massive volumes of noisy enterprise data
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Language models grounded in retrieved data to improve accuracy and reduce hallucinations
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Tools to specialize RAG agents for the most complex and knowledge-intensive use cases
![](https://contextual.ai/wp-content/uploads/2025/01/structured-unstructured-img2.png)
Reason over unstructured and structured data
Continuously ingest, extract, and retrieve your most important enterprise data—regardless of its scale, noisiness, or format
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Support for unstructured data sources like PDFs and HTML with rich media (e.g., images, charts, figures, tables, code)
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Support for structured data sources like data warehouses, databases, and spreadsheets
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Pre-built integrations to popular SaaS applications like Slack, Google Drive, Github, and more
![](https://contextual.ai/wp-content/uploads/2025/01/Frame-6780.png)
Maximize end-user trust and confidence
Provide end-users with clear attributions to relevant, up-to-date data sources and protections against potential hallucinations
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Precise citations to retrieved documents with bounding boxes to highlight relevant data to user
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Automated flagging of potential hallucinations with low groundedness
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Automated and ongoing ingestion of new data to ensure response timeliness
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Built-in evaluation tools to assess responses for equivalence and groundedness
![](https://contextual.ai/wp-content/uploads/2025/01/enterprise-security.png)
Meet robust enterprise security requirements
Deploy to production safely and confidently with a comprehensive suite of enterprise-grade security features
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
SOC 2 certified to ensure enterprise data is properly secured and protected
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Role-based access controls to ensure responses are only grounded in data that is accessible to the user
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
In-transit and at-rest encryption to protect sensitive data
![plus](https://contextual.ai/wp-content/themes/contextualai/images/plus.png)
![plus-hover](https://contextual.ai/wp-content/themes/contextualai/images/plus-hover.png)
![minus](https://contextual.ai/wp-content/themes/contextualai/images/minus.png)
![minus-hover](https://contextual.ai/wp-content/themes/contextualai/images/minus-hover.png)
Protections to ensure output is safe, accurate, appropriate, and aligned with customer brand and content guidelines
Deploy in our cloud or yours
![](https://contextual.ai/wp-content/uploads/2025/01/contextual-300x124.png)
Leverage a fully managed, highly secure SaaS offering on Contextual AI infrastructure
![](https://contextual.ai/wp-content/uploads/2025/01/Frame-6756-300x143.png)
Deploy within your virtual private cloud
![](https://contextual.ai/wp-content/uploads/2025/01/kubernetes.png)
Deploy within your on-prem environment
Powerful APIs for the entire agent development lifecycle
# Create an agent
import os
from contextual import ContextualAI
client = ContextualAI(
api_key=os.environ.get("CONTEXTUAL_API_KEY"),
)
create_agent_output = client.agents.create(
name="agent_name",
)
print(create_agent_output.id)
# Create a datastore
import os
from contextual import ContextualAI
client = ContextualAI(
api_key=os.environ.get("CONTEXTUAL_API_KEY"),
)
create_datastore_response = client.datastores.create(
name="datastore_name",
)
print(create_datastore_response.id)
# Query an agent
import os
from contextual import ContextualAI
client = ContextualAI(
api_key=os.environ.get("CONTEXTUAL_API_KEY"),
)
query_response = client.agents.query.create(
agent_id="your_agent_id",
messages=[{
"content": "content",
"role": "user",
}],
)
print(query_response.message_id)
print(query_response.message)
# Create a tune job
import os
from contextual import ContextualAI
client = ContextualAI(
api_key=os.environ.get("CONTEXTUAL_API_KEY"),
)
with open("path/to/your/training_file.csv", "rb") as file:
training_file_contents = file.read()
tune_response = client.agents.tune.create(
agent_id="your_agent_id",
training_file=training_file_contents,
)
print("Tune job ID:", tune_response.id)
# Create an evaluation round
import os
from contextual import ContextualAI
client = ContextualAI(
api_key=os.environ.get("CONTEXTUAL_API_KEY"),
)
launch_evaluation_response = client.agents.evaluate.create(
agent_id="your_agent_id",
evalset_name="your_dataset_name",
metrics=["equivalence"],
)
print(launch_evaluation_response.id)
# Create a dataset for tuning and eval
import os
from contextual import ContextualAI
client = ContextualAI(
api_key=os.environ.get("CONTEXTUAL_API_KEY"),
)
with open("path/to/your/dataset_file.csv", "rb") as file:
dataset_file_contents = file.read()
create_dataset_response = client.agents.datasets.evaluate.create(
agent_id="your_agent_id",
dataset_name="your_dataset_name",
dataset_type="evaluation_set",
file=dataset_file_contents,
)
print("Dataset name:", create_dataset_response.name)
![](https://contextual.ai/wp-content/uploads/2025/01/Python.png)
![](https://contextual.ai/wp-content/uploads/2025/01/javascript.png)
![](https://contextual.ai/wp-content/uploads/2025/01/typescript.png)